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a b s t r a c t

This paper studies the nature of social welfare orders on infinite utility streams, satisfying the conse-
quentialist equity principles known as Hammond Equity and the Pigou–Dalton transfer principle. The
first result shows that every social welfare order satisfying Hammond Equity and the Strong Pareto ax-
ioms is non-constructive in nature for all non-trivial domains, Y . The second result shows that, when the
domain set is Y = [0, 1], every social welfare order satisfying the Pigou–Dalton transfer principle is non-
constructive in nature. Specifically, in both results, we show that the existence of the appropriate social
welfare order entails the existence of a non-Ramsey set, a non-constructive object. The second result also
provides an example of a social welfare orderwhich can be represented, butwhich cannot be constructed.
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1. Introduction

The subject matter of ‘‘intergenerational equity’’, which has
received considerable attention in economics and philosophy, is
concerned with the important question of how to treat the well-
being of future generations relative to thewell-being of those living
at present.1

In his discussion of the concept of intergenerational equity,
Ramsey (1928) maintained that discounting one generation’s util-
ity relative to another’s is ‘‘ethically indefensible’’, and something
that ‘‘arises merely from the weakness of the imagination’’. In the
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literature on intertemporal social choice, Diamond (1965) formal-
ized the concept of ‘‘equal treatment’’ of all generations (present
and future) in the form of an Anonymity Axiom on social prefer-
ences. This requires that society should be indifferent between two
streams of well-being, if one is obtained from the other by inter-
changing the levels of well-being of any two generations.

In the context of a society where the concern for generations
extends over an infinite future, we are led to the question of
evaluating infinite utility streams consistently with social prefer-
ences which respect the Anonymity axiom. There is, of course, no
difficulty in doing this, since the social preference relation which
evaluates all infinite utility streams as indifferent satisfies the
Anonymity axiom trivially. Such social preference relations, how-
ever, are of no interest in social decisionmaking. Clearly, onewould
also like the social preference relation to exhibit some sensitivity to
individual utility levels in the infinite utility streams. This sensi-
tivity is usually captured in some form of the Pareto principle: so-
ciety should consider one stream of well-being to be superior to
another if at least one generation is better off and no generation is
worse off in the former compared to the latter. The various forms
of this principle that have been proposed in the context of infinite
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utility streams include the Strong Pareto axiom, the Infinite Pareto
axiom and the Weak Pareto axiom.2 However, as soon as one adds
such sensitivity requirements to the Anonymity axiom, fundamen-
tal difficulties arise in the consistent evaluation of infinite utility
streams.

This issue has received considerable attention in the literature
on intertemporal welfare economics, and we provide a brief
overview. For this purpose, we use the framework that has become
standard in this literature. We consider the problem of defining
social welfare orders on the set X of infinite utility streams, where
this set takes the form of X = YN, with Y denoting a non-empty
set of real numbers and N the set of natural numbers.

In a seminal contribution, Diamond (1965) showed that there
does not exist any continuous social welfare order satisfying the
Anonymity and Strong Pareto axioms (where continuity is defined
with respect to the sup metric), when Y is the closed interval
[0, 1]. A social welfare order satisfying the Strong Pareto axiom
and the continuity requirement is representable by a social welfare
function which is continuous in the sup metric, when Y is the
closed interval [0, 1]. Thus, Diamond’s result also implies that there
does not exist any social welfare function satisfying the Anonymity
and Strong Pareto axioms, which is continuous in the sup metric,
when Y is the closed interval [0, 1].

Basu and Mitra (2003) showed that this last statement can be
refined as follows: there does not exist any social welfare func-
tion satisfying the Anonymity and Strong Pareto axioms. Another
way of stating this is that there does not exist any representable
social welfare order satisfying the Anonymity and Strong Pareto
axioms. That is, by directly imposing the requirement of repre-
sentability of the social welfare order, one can dispense with the
continuity requirement in Diamond’s result. The impossibility re-
sult established by Basu and Mitra (2003) continues to hold when
the Strong Pareto axiom is weakened to the Infinite Pareto axiom
(Crespo et al., 2009), or further weakened to the Weak Pareto ax-
iom (Basu and Mitra, 2007; Dubey and Mitra, 2011).

If one does not require representability of the social welfare or-
der, it is possible to show the compatibility of the Anonymity and
Strong Pareto axioms. Svensson (1980) established this important
result, assuming Y to be the closed interval [0, 1]. However, his
possibility result uses the variant of Szpilrajn’s Lemma given in Ar-
row (1951), and so the social welfare order is non-constructive;
it cannot be used by policy makers for social decision making. Al-
though this is an observation about the particular social welfare
order proposed by Svensson, it led to a conjecture by Fleurbaey
and Michel (2003) that there exists no explicit description (that
is, avoiding the axiom of choice or similar contrivances) of an or-
dering which satisfies the Anonymity and Weak Pareto axioms.
Subsequently, Zame (2007) and Lauwers (2010) showed (by using
different definitions of ‘‘non-constructive’’ devices) that it is
not possible to obtain a social welfare order satisfying the
Anonymity and Strong Pareto axioms without resorting to some
non-constructive3 device. In fact, Lauwers (2010) established his
result in the case where the Strong Pareto axiom is replaced by
the Intermediate Pareto (which requires both the Infinite Pareto
and Monotonicity axioms) axiom. The result of Lauwers contin-
ues to hold when the Intermediate Pareto axiom is replaced by
theweaker sensitivity requirement of theWeak Pareto axiom. This

2 These sensitivity requirements are in the form of efficiency principles. They
are, of course, not the only sensitivity principles worth considering. A very weak
sensitivity requirement could simply be that there exist two utility streams (say x
and y) such that x is socially preferred to y.
3 The words ‘‘constructive’’ and ‘‘non-constructive’’ appear frequently in the rest

of the introduction and in subsequent sections. We define these words explicitly in
Section 2, drawing on the appropriate mathematical literature.
was established by Dubey (2011), using a variation of the tech-
nique introduced by Lauwers (2010), thereby confirming the Fleur-
baey–Michel conjecture.

The brief summary of results presented in the previous two
paragraphs pertains to the case where the domain set Y is the
closed interval [0, 1]. This summarywould have to bemodified ap-
propriately for other domain sets. Let us note that the impossibil-
ity results of Basu andMitra (2003) and of Crespo et al. (2009) hold
for any domain set Y consisting of at least two elements, so there
is nothing more to be said in those cases. When the sensitivity re-
quirement is weakened to Weak Pareto, however, there is a richer
set of possibilities. Basu and Mitra (2007) showed that there ex-
ists a representable social welfare order satisfying the Anonymity
and Weak Pareto axioms when Y is a subset of N. Following up on
this result, Dubey and Mitra (2011) completely characterized the
domain sets Y for which there exists a representable social welfare
order satisfying the Anonymity andWeak Pareto axioms. These are
precisely those domain sets Y which do not contain any set of the
order type of the set of positive and negative integers. Furthermore,
in those cases where the domain set Y does not have this property,
so that there is no representable social welfare order satisfying the
Anonymity and Weak Pareto axioms, it is also not possible to con-
struct a social welfare order satisfying the Anonymity and Weak
Pareto axioms (Dubey, 2011).

It will be noted that the representability of a social welfare
order is conceptually different from the issue of whether it can
be constructed. The latter concept involves the restriction that use
of the axiom of choice or a similar contrivance is forbidden. In
the former concept, there is the restriction that the order must
have a real-valued representation, but this representation itself
might be obtained by using the axiom of choice or a similar
device. Nevertheless, in the literature summarized above, it turns
out that whenever representation of a social welfare order is
actually possible (namely, cases inwhich the social welfare order is
required to satisfy theAnonymity andWeakPareto axioms, and the
domain set Y does not contain any set of the order type of the set of
positive and negative integers), one can explicitly write down the
appropriate social welfare function (Dubey and Mitra, 2011). And,
when representation of the social welfare order is not possible,
then construction of the social welfare order is not possible either
(Dubey, 2011). It is convenient to refer to this last observation as
a correspondence principle for social welfare orders (satisfying the
Anonymity and Weak Pareto axioms).

The concept of Anonymity is one of procedural equity; that is
the change involved does not alter the distribution of utilities in
the utility stream. Equity principles involving an alteration in the
distribution of utilities are called consequentialist equity concepts.
The equity axiom of Hammond (1976) is one of the key consequen-
tialist equity concepts, the other being the Pigou–Dalton transfer
principle. HammondEquity has several variationswhich have been
discussed in the literature. Strong Equity (see d’Aspremont and
Gevers, 1977, Dubey andMitra, forthcoming-a) and Hammond Eq-
uity for the Future (see Asheim et al., 2007, Banerjee, 2006) are
notable variations; others are of minor importance conceptually.
Altruistic Equity is a variation of the Pigou–Dalton transfer princi-
ple (see Hara et al., 2008 and Sakamoto, 2012).

The issues of representation and construction of social welfare
orders on infinite utility streams satisfying some notion of con-
sequentialist equity should, of course, be addressed, and several
contributions in the literature have been devoted to this topic.
However, let us make two initial observations before reviewing
this literature. First, some of the concepts of consequentialist eq-
uity (like Hammond Equity) do not involve sensitivity, and so (like
in the case of Anonymity), we need to supplement the equity no-
tion with an appropriate sensitivity requirement. In other cases
(like Strong Equity and the Pigou–Dalton transfer principle), the
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consequentialist equity concept itself requires some sensitivity,
and then it is less clear whether additional requirements are war-
ranted, and if so which additional requirements are incontrovert-
ible. Second, because there are several notions of consequentialist
equity, it is more helpful to have a selective review of the literature
(which highlights the important new ideas) rather than an exhaus-
tive catalog of results in all cases.

Strong Equity involves comparisons between two utility
streams (x and y) in which all generations except two have the
same utility levels in both utility streams. Regarding the two
remaining generations (say, i and j), one of the generations (say
i) is better off in utility stream x, and the other generation (j) is
better off in utility stream y, thereby setting up a conflict. The
axiom states that if for both utility streams, it is generation i
which is worse off than generation j (this, of course, requires us to
make intergenerational comparisons of utilities), then generation
i should be allowed (on behalf of the society) to choose between
x and y. That is, x is socially preferred to y, since generation i is
better off in x than in y. In the case of Hammond Equity, in a similar
comparison, one makes the weaker statement that x is socially at
least as good as y.

We focus first on the literature relating to Hammond Equity.
As this concept does not involve sensitivity, we add a sensitivity
requirement in the form of the Strong Pareto axiom.4 Bossert et al.
(2007) have shown that when Y = R, there exist social welfare
orders on infinite utility streams which satisfy Hammond Equity
and the Strong Pareto axiom. On the other hand, Alcantud and
Garcia-Sanz (2013) show that any social welfare order satisfying
Hammond Equity and Strong Pareto cannot be represented by a
real-valued function, if the domain set (Y ) consists of at least four
distinct elements. That is, an impossibility result arises as soon
as we admit a situation in which Hammond Equity can play a
role in ranking two utility streams. The existence result of Bossert
et al. (2007) uses the variant of Szpilrajn’s Lemma given in Arrow
(1951), a non-constructive device. This, of course, leaves open the
question of whether such social welfare orders can be constructed.
We show (in Proposition 1) that in fact the existence of such
social welfare orders implies the existence of a non-Ramsey set,
which is a non-constructive object. Thus, a correspondence principle
holds for social welfare orders satisfying Hammond Equity and
the Strong Pareto axiom. The situations in which representation
of such social welfare orders is not possible (which is all non-
trivial situations in this case), the construction of such orders is not
possible either.5

4 For results on the representation of social welfare orders satisfying Hammond
Equity, when the sensitivity requirement of Strong Pareto is replaced by Weak
Pareto see Alcantud (2012), Alcantud and Garcia-Sanz (2013) and Dubey and Mitra
(forthcoming-b).
5 Given the strongly negative results noted in the above paragraph, it is of

interest to examine whether the situation changes if the equity requirement is
strengthened to Strong Equity, while the efficiency principle is taken to be in its
weakest form, known as Monotonicity. (This efficiency concept is incontrovertible
as it only requires that if no one is worse off (in utility stream x compared to y),
then the society as a whole should not be worse off (in utility stream x compared
to y)). Actually, the theory (as developed by Dubey and Mitra (forthcoming-
a)) turns out to be not only somewhat more subtle in this case, but also quite
complete. There exist social welfare functions satisfying the Strong Equity axiom
and Monotonicity if and only if the domain set (Y ) has at most five distinct
elements. Further, when the domain set (Y ) has more than five distinct elements,
the existence of any social welfare order satisfying the Strong Equity axiom and
Monotonicity implies the existence of a non-Ramsey set, a non-constructive object.
It is worth pointing out that when representation is possible (that is, when Y has at
most five distinct elements), one can explicitly write down the appropriate social
welfare function. Also, in this context, the correspondence principle holds: if there
is no representable social welfare order satisfying the Strong Equity axiom and
Monotonicity, then there is no social welfare order, satisfying the Strong Equity
axiom and Monotonicity, which can be constructed.
We turn next to the other important consequential equity
concept, the Pigou–Dalton transfer principle. This involves com-
parisons between two utility streams (x and y) in which all genera-
tions except twohave the sameutility levels in both utility streams.
Regarding the two remaining generations (say, i and j), one of the
generations (say i) is better off in utility stream x, and the other
generation (j) is better off in utility stream y, thereby setting up a
conflict. If for both utility streams, generation j is at least as well
off as generation i (so that we have yj > xj ≥ xi > yi) and x can
be obtained from y by transferring utility from generation j to gen-
eration i (so that yj − xj = xi − yi), then x is socially preferred
to y.

Since the Pigou–Dalton transfer principle itself embodies sen-
sitivity, we examine the representation and construction of social
welfare orders satisfying just this principle, without adding other
requirements. Using the technique introduced by Basu and Mitra
(2007, Proposition 1), it has been established by Sakamoto (2012,
Proposition 3) that there is a representable socialwelfare order sat-
isfying the Pigou–Dalton transfer principle, when the domain set
is Y = [0, 1]. This existence result uses the Axiom of Choice. We
show (in Proposition 2) that (when Y = [0, 1]) the existence of
such a social welfare order implies the existence of a non-Ramsey
set, which is a non-constructive object. This result implies that a
social welfare order, satisfying the Pigou–Dalton transfer princi-
ple, cannot be constructed over infinite utility streams when the
domain set is Y = [0, 1].

Proposition 2 has further significance. It provides an important
example of a social welfare order which can be represented, but
which cannot be constructed. It is, of course, well-known that
there are social welfare orders (like the lexicographic order) which
can be constructed but not represented. Thus, the correspondence
principle between the representation and construction of social
welfare orders, (that we have observed above for other equity
concepts) is not universally valid.

2. Preliminaries

2.1. Notation

Let R and N be the sets of real numbers and natural numbers
respectively. Let T be an infinite subset of N. We denote by Ω(T )
the collection of all infinite subsets of T , and we denote Ω(N) by
Ω . Thus, for any infinite subset T of N, we have T ⊂ N, and T ∈ Ω .

For all y, z ∈ RN, we write y ≥ z if yn ≥ zn, for all n ∈ N; we
write y > z if y ≥ z and y ≠ z; and we write y ≫ z if yn > zn for
all n ∈ N.

2.2. Definitions

2.2.1. Social welfare order
Let Y , a non-empty subset of R, be the set of all possible utilities

that any generation can achieve. Then X ≡ YN is the set of all
possible utility streams. If ⟨xn⟩ ∈ X , then ⟨xn⟩ = (x1, x2, . . .),
where, for all n ∈ N, xn ∈ Y represents the amount of utility that
the generation of period n earns.

We consider binary relations on X , denoted by %, with the
symmetric and asymmetric parts denoted by∼ and≻ respectively,
defined in the usual way. A social welfare order (SWO) is a complete
and transitive binary relation.

A social welfare function (SWF) is a mappingW : X → R. Given
an SWO % on X , we say that % can be represented by a real-valued
function if there is amappingW : X → R such that for all x, y ∈ X ,
we have x % y if and only if W (x) ≥ W (y).
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2.2.2. Efficiency
The following efficiency axioms on social welfare orders are

used in the analysis or the discussion of this paper.

Definition 1 (Monotonicity (MON)). For x, y ∈ X , if x ≥ y, then
x % y.

Definition 2 (Strong Pareto (SP)). For x, y ∈ X , if x > y, then x ≻ y.

Definition 3 (Infinite Pareto (IP)). For x, y ∈ X , if x > y, and
there exists a strictly increasing subsequence of natural numbers
{jn : n ∈ N} such that xjn > yjn , then x ≻ y.

Definition 4 (Weak Pareto (WP)). For x, y ∈ X , if x ≫ y, then x ≻ y.

2.2.3. Equity
The following equity axioms on socialwelfare orders are used in

the analysis or the discussion of this paper. The procedural equity
criterion that we will use is Anonymity (also sometimes known as
Finite Anonymity).

Definition 5 (Anonymity (AN)). If x, y ∈ X , and if there exist i, j ∈ N
such that xi = yj and xj = yi, and for every k ∈ N \ {i, j}, xk = yk,
then x ∼ y.

The consequentialist equity criteria that we will use are:

Definition 6 (Strong Equity (SE)). If x, y ∈ X , and there exist i, j ∈

N, such that yj > xj > xi > yi while yk = xk for all k ∈ N \ {i, j},
then x ≻ y.

Definition 7 (Hammond Equity (HE)). If x, y ∈ X , and there exist
i, j ∈ N, such that yj > xj > xi > yi while yk = xk for all
k ∈ N \ {i, j}, then x % y.

Definition 8 (Pigou–Dalton Transfer Principle (PD)). If x, y ∈ X , and
there exist i, j ∈ N, such that yj > xj ≥ xi > yi, and yj +yi = xj + xi
while yk = xk for all k ∈ N \ {i, j}, then x ≻ y.

2.2.4. Ramsey and non-Ramsey collections of sets
A collection of sets Γ ⊂ Ω is called Ramsey6 if there exists

T ∈ Ω such that either Ω(T ) ⊂ Γ or Ω(T ) ⊂ Ω�Γ . Next we
define collection of sets known as non-Ramsey.

Definition 9 (Non-Ramsey Sets).A collection of setsΓ ⊂ Ω is non-
Ramsey7 if for every T ∈ Ω , the collection Ω(T ) intersects both Γ

and its complement Ω�Γ .

6 Ifwe considerΩ to be a topological space, endowedwith the topology inherited
from the standard product topology on RN , then Galvin and Prikry (1973) showed
that if Γ ⊂ Ω is any Borel set, then it is Ramsey; in particular, if Γ ⊂ Ω is any open
set, then it is Ramsey.
7 The concept of non-Ramsey collection of setswas introduced in the literature on

ordering infinite utility streams by Lauwers (2010). Erdós and Rado (1952, Example
1, p. 434) have shown, using Zermelo’s well-ordering principle (which is known to
be equivalent to the Axiom of Choice), that there is a collection of sets Γ ⊂ Ω ,
which is non-Ramsey.
2.2.5. Non-constructive statements and objects
Wewill be concernedwith statements of the form, ‘‘There exists

a social welfare order % on X , satisfying property P ’’. A statement
of this form is an assertion regarding the existence of an object O:
in our case, the object O is a social welfare order % on X , satisfying
property P .

Consider then, in general, the statement, ‘‘There exists an object
O’’. Such a statement will be called non-constructive if (i) it can be
established in everymodel of ZFC set theory (Zermelo–Fraenkel set
theorywith the axiom of choice AC), but (ii) there is somemodel of
ZF set theory (Zermelo–Fraenkel set theory without AC) in which
it cannot be established. In this case, we will also say that the
object O is a non-constructive object, and that the object O cannot
be constructed. For the sake of completeness, let us add thatwewill
say that an object O can be constructed if the existence of the object
O can be established in every model of ZF set theory.

As an example of the use of this terminology, consider the
statement, ‘‘There exists a non-Ramsey collection of sets Γ ⊂ Ω ’’.
The object O, whose existence is being asserted, is ‘‘a non-Ramsey
collection of sets Γ ⊂ Ω ’’. The statement can be established
under ZFC; in fact, it has been established under ZFC by Erdós and
Rado (1952). Mathias (1977) has shown that in Solovay’s model
M1 (which satisfies ZF, but violates AC) every collection of sets
Γ ⊂ Ω is Ramsey, and so there is some model of ZF set theory in
which the statement cannot be established. Thus, according to our
terminology, the statement ‘‘There exists a non-Ramsey collection
of sets Γ ⊂ Ω ’’ is non-constructive. Furthermore, we can say that
the object ‘‘a non-Ramsey collection of sets Γ ⊂ Ω ’’ is a non-
constructive object, and this object cannot be constructed.

Let us make two remarks regarding our definition. First, our
discussion here belongs in the area of mathematics known as
Constructive Mathematics. It is clear from the literature that there is
no consensus about the definitions of various key concepts in this
sub-discipline. For an overview, together with a comprehensive
set of references to some of the original contributions in this area,
see Beeson (1985). Our definition is one which is commonly used
by many mathematicians, currently making contributions in set
theory andmathematical logic. As an example of its commonusage
(reflected in the fact that the definition is implicit rather than
explicit), we refer the reader to Howard et al. (2001), both for
the choice of the title of the paper, and the first paragraph of its
introduction.8

Second, our definition (and the illustration of its use) assumes
some degree of familiarity with Zermelo–Fraenkel set theory,
the Axiom of Choice, and Model theory. For an overview of
these concepts, we refer the reader to Zame (2007, Section 4); a
comprehensive coverage can be found in Chang and Keisler (1992)
and Jech (1978).

3. Results and proofs

In this section, we present the results of the paper, dealing
with the non-constructive nature of socialwelfare orders satisfying
some well-known consequentialist equity conditions. The state-
ment of the results, together with accompanying discussions, ap-
pear in the first subsection. The second subsection contains the
complete proofs.

8 In their definitive study, Howard and Rubin (1998) note that they are
‘‘concerned with sentences in the language of set theory which can be proved using
the axiom of choice but which are not theorems of set theory with that axiom
omitted’’. They call such sentences ‘‘forms of the axiom of choice’’, and analyze 383
such forms of the axiom of choice. We call such sentences ‘‘non-constructive’’.
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3.1. Non-constructive equitable social welfare orders

3.1.1. Hammond equity and Strong Pareto
We focus first on the consequentialist equity principle knownas

Hammond equity, and investigate the existence of social welfare
orders satisfying Hammond Equity together with the efficiency
principle known as Strong Pareto, when Y consists of at least four
distinct elements.

The result of Bossert et al. (2007, Theorem 2) establishes the
existence of a social welfare order % on X = YN satisfying Ham-
mond Equity and Strong Pareto axioms, by invoking Arrow’s ver-
sion of Szpilrajn’s Lemma; see Arrow (1951, p. 64). In any model
of ZFC, Szpilrajn’s Lemma holds by the Axiom of Choice (see Jech,
1973, p. 19), and consequently so does Arrow’s version of it. Thus,
in anymodel of ZFC, there exists a socialwelfare order% onX = YN

satisfying Hammond Equity and Strong Pareto axioms.
The principal result in this subsection (Proposition 1) is that

the statement: ‘‘There exists a social welfare order % on X = YN

satisfying Hammond Equity and Strong Pareto axioms’’ is non-
constructive. That is, in terms of the definitions given in Sec-
tion 2.2.5, a social welfare order % on X = YN satisfying Hammond
Equity and Strong Pareto axioms cannot be constructed. We estab-
lish this by first proving that when there exists a social welfare or-
der % on X = YN satisfying Hammond Equity and Strong Pareto
axioms, then % can be used to define a set Γ ⊂ Ω , which is non-
Ramsey.

We try to explain informally the content and proof of Propo-
sition 1. To this end, observe that a social welfare order % is con-
cerned with ranking of utility streams in X = YN, and Ramsey or
non-Ramsey collections of sets refer to collections of infinite sub-
sets ofN; sowe need to link the two.Wedo this by adopting explicit
rules which determine the assignments of utilities to the various
generations, depending on how the set of all generations is parti-
tioned. This procedure is constructive, as it does not use any form
of the Axiom of Choice.

To elaborate on the procedure, given any infinite subset N ⊂ N,
we explicitly define a unique finite subset N ⊂ N with it. Then,
we explicitly define x(N) ∈ X and y(N) ∈ X , associated with N .9
(These are also written as x(N,N) and y(N,N), but they can be
written as x(N) and y(N) respectively, since N is uniquely defined
by an explicit formula as soon as N is specified). Then, we define a
subset Γ ⊂ Ω by:

Γ ≡ {N ∈ Ω : y(N) ≻ x(N)}.

This Γ is a well-defined set, since the preference order % is
complete. In Proposition 1(i), we show that this set Γ is a non-
Ramsey set.

We now turn to Proposition 1(ii). If a preference order %
satisfying Hammond Equity and Strong Pareto can be constructed,
then the set Γ can be constructed too, since it is defined in terms
of % by using a constructive procedure (as described above). This
is a contradiction, since we know from Proposition 1(i) that Γ

is a non-Ramsey set, and from the definition and discussion of
Section 2.2.5 that consequently Γ cannot be constructed. Thus, a
preference order satisfying Hammond Equity and Strong Pareto
cannot be constructed.

Proposition 1. Let Y ⊂ R contain at least four distinct elements.

(i) If there exists a social welfare order % on X = YN satisfying
Hammond Equity and Strong Pareto axioms, then % can be used
to define a set Γ ⊂ Ω , which is non-Ramsey.

9 These explicit definitions appear in displays (1) and (2) of the proof of
Proposition 1.
(ii) A social welfare order % on X = YN satisfying Hammond Equity
and Strong Pareto axioms cannot be constructed.

Remark. It is known (see Alcantud and Garcia-Sanz, 2013) that
any social welfare order satisfying Hammond Equity and Strong
Pareto cannot be represented by a real-valued function, if the
domain set (Y ) consists of at least four distinct elements. That is,
as soon as we admit a situation in which Hammond Equity can
play a role in ranking two utility streams, it becomes impossible to
represent such a social welfare order. Our result in this subsection
shows that if the domain set (Y ) consists of at least four distinct
elements, there is no social welfare order satisfying Hammond
Equity and Strong Pareto, which can be constructed. Thus, a
correspondence principle holds for social welfare orders satisfying
Hammond Equity and the Strong Pareto axiom. The situations in
which representation of such social welfare orders is not possible
(which is all non-trivial situations in this case), the construction of
such orders is not possible either.

3.1.2. Pigou–Dalton transfer principle
We turn next to the consequentialist equity principle known as

the Pigou–Dalton transfer principle, and investigate the existence
of social welfare orders satisfying the Pigou–Dalton transfer
principle, when Y is the closed interval [0, 1].

The result of Bossert et al. (2007, Theorem 1) establishes the
existence of a social welfare order % on X = YN satisfying the
Pigou–Dalton transfer principle, by invoking Arrow’s version of
Szpilrajn’s Lemma. As noted in the previous subsection, in any
model of ZFC, Szpilrajn’s Lemma holds and consequently so does
Arrow’s version of it. Thus, in anymodel of ZFC, there exists a social
welfare order % on X = YN satisfying the Pigou–Dalton transfer
principle.

The principal result in this subsection (Proposition 2) is that the
statement: ‘‘There exists a social welfare order % on X = YN sat-
isfying the Pigou–Dalton transfer principle’’ is non-constructive.
That is, in terms of the definitions given in Section 2.2.5, a social
welfare order % on X = YN satisfying the Pigou–Dalton transfer
principle cannot be constructed. This is an especially strong neg-
ative result since no efficiency principle is imposed on the social
welfare order % on X . That is, unlike the result of the previous sec-
tion, this negative result cannot be attributed to a conflict between
equity and efficiency principles imposed on a social welfare order.

Our procedure for establishing Proposition 2 is similar to that
used to establish Proposition 1. We first prove that when there ex-
ists a social welfare order% on X = YN satisfying the Pigou–Dalton
transfer principle, then% can be used to define a setΓ ⊂ Ω , which
is non-Ramsey. If a preference order % satisfying the Pigou–Dalton
transfer principle can be constructed, then the set Γ can be con-
structed too, since it is defined in terms of % by using a con-
structive procedure. This is a contradiction, since we know from
Proposition 2(i) that Γ is a non-Ramsey set, and from the defini-
tion and discussion of Section 2.2.5 that consequently Γ cannot be
constructed. Thus, a preference order satisfying the Pigou–Dalton
transfer principle cannot be constructed.

Proposition 2. Let Y be the closed interval [0, 1].

(i) If there exists a social welfare order % on X = YN satisfying the
Pigou–Dalton transfer principle, then % can be used to define a set
Γ ⊂ Ω , which is non-Ramsey.

(ii) A social welfare order % on X = YN satisfying the Pigou–Dalton
transfer principle cannot be constructed.

Remark. Using the technique introduced by Basu and Mitra
(2007), it has been established by Sakamoto (2012) that there is
a representable social welfare order satisfying the Pigou–Dalton
transfer principle,when thedomain setY is [0, 1]. (Theproof of this
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existence result uses the Axiom of Choice.) In view of this, Propo-
sition 2 provides an important example of a social welfare order
which cannot be constructed, even though it can be represented. It
is, of course, well-known that there are social welfare orders (like
the lexicographic order) which can be constructed but not repre-
sented. Thus, the correspondence principle between the representa-
tion and construction of social welfare orders, that can be observed
for other equity concepts, is not universally valid.

3.2. Proofs of the two results

Proof of Proposition 1. We establish statement (i) of Proposi-
tion 1. Statement (ii) then follows from the argument given in Sec-
tion 3.1.1, just before the statement of Proposition 1.

Let Y contain four distinct elements. Define Y ≡ {a, b, c, d},
with a < b < c < d. Let N ≡ {n1, n2, n3, n4, . . .} be an
infinite subset of N such that nk < nk+1 for all k ∈ N. Let N =

{1, 2, . . . , n4 − 1}. For any T ∈ Ω(N), T ≡ {t1, t2, t3, t4, . . .} with
tk < tk+1 for all k ∈ N, we partition the set of natural numbers N in
U = {t1, t1 +1, . . . , t2 −1, t3, . . . , t4 −1, . . .} and U c

= N\U . Let
U cT = U c

∩ N and UT = U ∩ N . Further, let U cN = U c
\ N ,

and UN = U \ N . We define the utility stream x(T ,N) whose
components are,

xt =


c if t ∈ U cT , d if t ∈ UT ,

a if t ∈ U cN, b if t ∈ UN.
(1)

The utility assigned to generations in U cT and UT are c , and d
respectively. Also the utility assigned to generations in U cN and
UN are a and b respectively.

The utility stream y(T ,N) is defined using the subset T \ {t1} in
place of subset T , in following fashion. The two partitions of the set
of natural numbers N areU = {t2, t2 + 1, . . . , t3 − 1, t4, . . . , t5 −

1, . . .} and U c = N\U . Let U cT = U c ∩N and UT = U∩N . Further,
let U cN = U c \ N , and UN = U \ N . We define the utility stream
y(T ,N) whose components are,10

yt =


c if t ∈ U cT , d if t ∈ UT ,

a if t ∈ U cN, b if t ∈ UN.
(2)

As N is unique for any N , x(S,N) and y(S,N) are well-defined for
any S ∈ Ω(N).

We will prove a stronger result by replacing the Strong Pareto
axiom with the weaker Infinite Pareto axiom. Let % be a social
welfare order satisfying HE and IP. We claim that the collection of
sets Γ ≡ {N ∈ Ω : y(N) ≻ x(N)} is non-Ramsey. We need to
show that for each T ∈ Ω , the collection Ω(T ) intersects both Γ

and Ω�Γ . For this, it is sufficient to show that for each T ∈ Ω ,
there exists S ∈ Ω(T ) such that either T ∈ Γ or S ∈ Γ , with the
either/or being exclusive. Let T ≡ {t1, t2, . . .}. In the remaining
proof we are concerned with infinite utility sequences x(T , T ),
y(T , T ) and x(S, T ), y(S, T ) where S ∈ Ω(T ). For ease of notation,
we omit reference to T . As the binary relation is complete, one of
the following cases must arise: (a) y(T ) ≻ x(T ); (b) x(T ) ≻ y(T );
(c) x(T ) ∼ y(T ). Accordingly, we now separate our analysis into
three cases.

(a) Let x(T ) ≺ y(T ); that is, T ∈ Γ . We drop t1 and t4n+1, t4n+2
for all n ∈ N from T to obtain S = {t2, t3, t4, t7, t8, t11, . . .}.
Hence S ∈ Ω(T ). Let T1 ≡ {t1, t1 + 1, . . . , t2 − 1} and
T2 ≡ {t4n+1, t4n+1 + 1, . . . , t4n+2 − 1 : n ∈ N}. Note that T2
contains infinitely many elements. Observe that

10 If n1 = 1, then {1, . . . , n1 − 1} = ∅. For illustration, for N = {1, 2, 3, 4, . . .},
N = {1, 2, 3} and the two utility streams are x(N,N) = {d, c, d, a, b, a, . . .} and
y(N,N) = {c, d, c, b, a, . . .}.
(A) for all t ∈ T1, xt(T ) = d > c = yt(S);
(B) for all t ∈ T2, xt(T ) = b > a = yt(S) and xt(S) = b > a =

yt(T ); and
(C) for all the remaining t ∈ N, xt(T ) = yt(S) and xt(S) =

yt(T ).
Then y(S) ≺ x(T ) and y(T ) ≺ x(S) by IP. Since x(T ) ≺ y(T ), we
get

y(S) ≺ x(T ) ≺ y(T ) ≺ x(S) ⇒ S ∉ Γ .

(b) Let y(T ) ≺ x(T ), or T ∉ Γ . We drop t1 and t4n, t4n+1 for
all n ∈ N from T to obtain S = {t2, t3, t6, t7, t10, t11, . . .}.
Hence S ∈ Ω(T ). Let T1 ≡ {t1, t1 + 1, . . . , t2 − 1} and
T2 ≡ {t4n, t4n +1, . . . , t4n+1 −1 : n ∈ N}. Note that T2 contains
infinitely many elements. Observe that
(A) for all t ∈ T1, xt(T ) = d > c = yt(S); and there are finitely

many coordinates in T1;
(B) for all t ∈ T2, yt(T ) = b > a = xt(S) and yt(S) = b > a =

xt(T );
(C) for all coordinates p ∈ T1, it is possible to pick a coordinate

q ∈ T2, such that xp(T ) = d > yp(S) = c > b = yq(S) >
a = xq(T );

(D) for all the remaining t ∈ N, xt(T ) = yt(S) and xt(S) =

yt(T ).
So, x(S) ≺ y(T ) by IP and x(T ) ≺ y(S) by HE and IP. Since
y(T ) ≺ x(T ),

x(S) ≺ y(T ) ≺ x(T ) ≺ y(S) ⇒ S ∈ Γ .

(c) Let x(T ) ∼ y(T ) or T ∉ Γ . We drop t1, t2, t3 and t4n+2, t4n+3
for all n ∈ N from T to obtain S = {t4, t5, t8, t9, . . .}. Hence
S ∈ Ω(T ). Let T1 ≡ {t1, . . . , t2 − 1; t3, . . . , t4 − 1}, T2 ≡

{t2, . . . , t3 − 1} and T3 ≡ {t4n+2, . . . , t4n+3 − 1 : n ∈ N}. Note
that T3 contains infinitely many elements. Observe that
(A) for all t ∈ T2, yt(T ) = d > c = xt(S);
(B) for all t ∈ T3, yt(S) = b > a = xt(T ) and yt(T ) = b > a =

xt(S);
(C) for all t ∈ T1, xt(T ) = d > c = yt(S); and there are finitely

many coordinates in T1;
(D) for all coordinates p ∈ T1, it is possible to pick a coordinate

q ∈ T3, such that xp(T ) = d > yp(S) = c > b = yq(S) >
a = xq(T ).

(E) for all the remaining t ∈ N, xt(T ) = yt(S) and xt(S) =

yt(T ).
So, x(S) ≺ y(T ) by IP and x(T ) ≺ y(S) by HE and IP. Since
x(T ) ∼ y(T ), we get

x(S) ≺ y(T ) ∼ x(T ) ≺ y(S) ⇒ S ∈ Γ . �

Proof of Proposition 2. We establish statement (i) of Proposi-
tion 2. Statement (ii) then follows from the argument given in sub-
Section 3.1.2, just before the statement of Proposition 2.

Let Y contain at least eight distinct elements. Define Y ≡

{a, b, c, d, e, f , g, h}, with a < b < c < d < e < f < g <
h, a + h = b + g, c + f = d + e, a + d = b + c, e + h = f + g .11
Let N ≡ {n1, n2, n3, n4, . . .} be an infinite subset of N such that
nk < nk+1 for all k ∈ N. Let N = {1, 2, . . . , 2(n4 − 1)}. For
any T ∈ Ω(N), T ≡ {t1, t2, t3, t4, . . .} with tk < tk+1 for all
k ∈ N, we partition the set of natural numbers N in U = {2t1 −

1, 2t1, . . . , 2(t2 − 1), 2t3 − 1, . . . , 2(t4 − 1), . . .} and U c
= N \ U .

LetU cTE = {t ∈ U c
∩N : t is even} andU cTO = U c

∩N\U cTE. Also,
UTE = {t ∈ U ∩N : t is even}, UTO = U ∩N \ UTE, U cN = U c

\N ,
and UN = U \ N . Further, U cNE = {t ∈ U cN : t is even}, U cNO =

11 Take a = 0, b =
1
8 , c =

2
8 , d =

3
8 , e =

4
8 , f =

5
8 , g =

6
8 and h =

7
8 for

instance.
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U cN \ U cNE, UNE = {t ∈ UN : t is even}, and UNO = UN \ UNE.
We define the utility stream x(T ,N) whose components are,

xt =


c if t ∈ U cTO, f if t ∈ U cTE,

d if t ∈ UTO, e if t ∈ UTE,

a if t ∈ U cNO, h if t ∈ U cNE,

b if t ∈ UNO, g if t ∈ UNE.

(3)

The utility assigned to odd and even generations inU c
∩N andU∩N

are c , f , d and e respectively. Similarly the utility assigned to odd
and even generations in U cN and UN are a, h, b and g respectively.

The utility stream y(T ,N) is defined using the subset T \ {t1} in
place of subset T , in the following fashion. The two partitions of the
set of natural numbersN areU = {2t2−1, 2t2, . . . , 2(t3−1), 2t4−
1, . . . , 2(t5 − 1), . . .} and U c == N \ U . Let U cTE = {t ∈ U c ∩ N :

t is even} and U cTO = U c ∩ N \ U cTE. Also, UTE = {t ∈ U ∩ N :

t is even}, UTO = U ∩ N \ UNE, U cN = U c \ N , and UN = U \ N .
Further, U cNE = {t ∈ U cN : t is even}, U cNO = U cN \ U cNE,UNE = {t ∈ UN : t is even}, UNO = UN \ UNE. We define the
utility stream y(T ,N) whose components are,12

yt =


c if t ∈ U cTO, f if t ∈ U cTE,

d if t ∈ UTO, e if t ∈ UTE,

a if t ∈ U cNO, h if t ∈ U cNE,

b if t ∈ UNO, g if t ∈ UNE.

(4)

As N is unique for any N , x(S,N) and y(S,N) are well-defined for
any S ∈ Ω(N).

Let % be a social welfare order satisfying Pigou–Dalton Equity.
We claim that the collection of sets Γ ≡ {N ∈ Ω : y(N) ≻

x(N)} is non-Ramsey. We need to show that for each T ∈ Ω ,
the collection Ω(T ) intersects both Γ and Ω�Γ . For this, it is
sufficient to show that for each T ∈ Ω , there exists S ∈ Ω(T ) such
that either T ∈ Γ or S ∈ Γ , with the either/or being exclusive.
Let T ≡ {t1, t2, . . .}. In the remaining proof we are concerned with
infinite utility sequences x(T , T ), y(T , T ) and x(S, T ), y(S, T )where
S ∈ Ω(T ). For ease of notation, we omit reference to T . As the
binary relation is complete, one of the following cases must arise:
(a) y(T ) ≻ x(T ); (b) x(T ) ≻ y(T ); (c) x(T ) ∼ y(T ). Accordingly, we
now separate our analysis into three cases.

(a) Let y(T ) ≻ x(T ); that is, T ∈ Γ . We drop t1 from T to obtain
S = {t2, t3, t4, . . .}. Hence S ∈ Ω(T ). Let T1 ≡ {2t1 − 1, 2t1 +

1, . . . , 2t2 − 3} and T2 ≡ {2t1, 2t1 + 2, . . . , 2t2 − 2}. Observe
that
(A) for all t ∈ T1, xt(T ) = d > c = yt(S);
(B) for all t ∈ T2, xt(T ) = e < f = yt(S);
(C) for all the remaining t ∈ N, xt(T ) = yt(S).
(D) for all t ∈ N, xt(S) = yt(T ).
Then for the generations 2t1 − 1 and 2t1,

y2t1−1(S) = c < d = x2t1−1(T ) < x2t1(T )

= e < f = y2t1(S), and c + f = d + e.

Similar inequalities hold for the pair of generations {2t1 +

1, 2t1+2}, . . . , {2t2−3, 2t2−2}. Each of these pairs leads to PD
improvements in x(T ) compared to y(S). Since these are finitely
many PD improvements, x(T ) ≻ y(S) by PD. Also, x(S) ∼ y(T ).
Since y(T ) ≻ x(T ), we get

x(S) ∼ y(T ) ≻ x(T ) ≻ y(S).

Thus, x(S) ≻ y(S) by transitivity of %, and so S ∉ Γ .

12 If n1 = 1, then {1, . . . , 2(n1 − 1)} = ∅. For illustration, for N =

{1, 2, 3, 4, . . .}, N = {1, 2, 3, 4, 5, 6} and the two utility streams are x(N,N) =

{d, e, c, f , d, e, a, h, b, g, . . .} and y(N,N) = {c, f , d, e, c, f , b, g, a, h, . . .}.
(b) Let x(T ) ≻ y(T ); that is, T ∉ Γ . We drop t1 and minimum
number of t4n, t4n+1 such that

|{2t1 − 1, . . . , 2t2 − 2}| ≤ |{2t4 − 1, . . . , 2t5 − 2} ∪ · · ·

∪ {2t4k − 1, . . . , 2t4k+1 − 2}|

from T to obtain S = {t2, t3, t6, t7, t10, t11, . . .}. Hence S ∈

Ω(T ). Denote the set of coordinates {2t1−1, 2t1+1, . . . , 2t2−
3} by T1, {2t1, 2t1 + 2, . . . , 2t2 − 2} by T2, {2t4 − 1, 2t4 +

1, . . . , 2t5 − 3, . . . , 2t4k − 1, . . . , 2t4k+1 − 3} by T3 and
{2t4, 2t4 + 2, . . . , 2t5 − 2, . . . , 2t4k, . . . , 2t4k+1 − 2} by T4.
(i) For x(T ) and y(S),

(A) for all t ∈ T1, xt(T ) = d > c = yt(S);
(B) for all t ∈ T3, xt(T ) = a < b = yt(S);
(C) for all t ∈ T2, xt(T ) = e < f = yt(S);
(D) for all t ∈ T4, xt(T ) = h > g = yt(S);
(E) for all the remaining coordinates, xt(T ) = yt(S).
Following cases arise.
(I) For the generations 2t1 − 1 and 2t4 − 1,

x2t4−1(T ) = a < b = y2t4−1(S) < y2t1−1(S)
= c < d = x2t1−1(T ), and

a + d = b + c.
Similar inequalities hold for the pair of generations
{2t1 + 1, 2t4 + 1}, . . . , {2t2 − 3,m} wherem ∈ T3.

(II) For the generations 2t1 and 2t4,
x2t1(T ) = e < f = y2t1(S) < y2t4(S)

= g < h = x2t4(T ), and e + h = f + g.
Similar inequalities hold for the pair of generations
{2t1+2, 2t4+2}, . . . , {2t2−2,m+1}wherem+1 =

m′
∈ T4.

(III) For the generations m′
+ 1,m′

+ 2, and remaining
generations13 in T3 ∪ T4,
xm′+1(T ) = a < b = ym′+1(S) < ym′+2(S)

= g < h = xm′+2(T ), and
a + h = b + g.

Each of these instances leads to PD improvements in y(S)
compared to x(T ) and there are finitely many of them.
Hence, y(S) ≻ x(T ) by PD.

(ii) For x(S) and y(T )
(A) for all t ∈ T3, xt(S) = a < b = yt(T );
(B) for all t ∈ T4, xt(S) = h > g = yt(T );
(C) for all the remaining coordinates, yt(T ) = xt(S).
The case of generations in T3 and T4 is similar to (b)(i)(III)
above. Since these are finitely many PD improvements,
y(T ) ≻ x(S) by PD. Since x(T ) ≻ y(T ), we get
y(S) ≻ x(T ) ≻ y(T ) ≻ x(S).
Thus, y(S) ≻ x(S) by transitivity of %, and so S ∈ Γ .

(c) Let x(T ) ∼ y(T ); that is, T ∉ Γ . We drop t1, t2, t3, and
minimum number of t4n+2, t4n+3 such that

|{2t1 − 1, . . . , 2t2 − 2} ∪ {2t3 − 1, . . . , 2t4 − 2}|
≤ |{2t6 − 1, . . . , 2t7 − 2} ∪ · · ·

∪ {2t4k+2 − 1, . . . , 2t4k+3 − 2}|

from T to obtain S = {t4, t5, t8, t9, . . .}. Hence S ∈ Ω(T ).
Denote the set of coordinates {2t2 − 1, 2t2 + 1, . . . , 2t3 −

3} by T1, {2t2, 2t2 + 2, . . . , 2t3 − 2} by T2, {2t1 − 1, 2t1 +

1, . . . , 2t2 − 3} ∪ {2t3 − 1, 2t3 + 1, . . . , 2t4 − 3} by T3,
{2t1, 2t1 + 2, . . . , 2t2 − 2} ∪ {2t3, 2t3 + 2, . . . , 2t4 − 2} by T4,
{2t6 − 1, 2t6 + 1, . . . , 2t7 − 3, . . . , 2t4k+2 − 1, . . . , 2t4k+3 − 3}
byT1, and {2t6, . . . , 2t7−2, . . . , 2t4k+2, . . . , 2t4k+3−2} byT2.
(i) For x(S) and y(T ),

13 The number of these generations is even.
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(A) for all t ∈ T1, yt(T ) = d > c = xt(S);
(B) for all t ∈ T2, yt(T ) = e < f = xt(S);
(C) for all t ∈ T1, xt(S) = a < b = yt(T );
(D) for all t ∈ T2, xt(S) = h > g = yt(T );
(E) for all the remaining coordinates, yt(T ) = xt(S).
ForT1,T2, PD improvements in y(T ) compared to x(S) can
be shown following the case (b)(i)(III) above. Also for T1,
T2, PD improvements in y(T ) compared to x(S) can be
shown following the case (a) above. Since these are finitely
instances of PD improvements, x(S) ≺ y(T ) by PD.

(ii) For x(T ) and y(S),
(A) for all t ∈ T3, xt(T ) = d > c = yt(S);
(B) for all t ∈ T1, xt(T ) = a < b = yt(S);
(C) for all t ∈ T4, xt(T ) = e < f = yt(S);
(D) for all t ∈ T2, xt(T ) = h > g = yt(S);
(E) for all the remaining coordinates, yt(S) = xt(T ).
Here, PD improvements in y(S) compared to x(T ) can be
shown following the case (b)(i) above. Since these are
finitely many instances of PD improvements, y(S) ≻ x(T )
by PD.

Since x(T ) ∼ y(T ), we get

y(S) ≻ x(T ) ∼ y(T ) ≻ x(S).

Thus, y(S) ≻ x(S) by transitivity of %, and so S ∈ Γ . �
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